Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

S. Thamotharan, ${ }^{a} \ddagger$
 V. Parthasarathi, ${ }^{\text {a* }}$
 P. Sathishkumar, ${ }^{\text {a }}$
 Prashant R. Latthe, ${ }^{\text {b }}$
 Bharati Badami ${ }^{\text {b }}$ and
 K. Ravikumar ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\text {b }}$ Post-Graduate Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, India, and ${ }^{\text {c }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
\# Present address: Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India.

Correspondence e-mail: vpsarati@yahoo.com

Key indicators
Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.116$
Data-to-parameter ratio $=11.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(4-Acetylphenyl)- N^{\prime}-[(4-sydnon-3-yl)phenyl]urea dimethylformamide solvate

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$, the dihedral angle between the planes of the sydnone ring and the attached benzene ring is $13.56(8)^{\circ}$. The benzene rings are inclined at an angle of $21.02(8)^{\circ}$ with respect to one another. In the solid state, intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are observed.

Comment

Sydnones are less toxic, but potent, porphyrinogenic and antiinflammatory compounds (Thamotharan, Parthasarathi, Sanyal et al., 2003; Thamotharan, Parthasarathi, Hunnur et al., 2003, and references therein). The present study was undertaken to determine the crystal and molecular structure of the title compound, (I) (Fig. 1).

(I)

The bond lengths and angles in the sydnone moiety in (I) are comparable to those of related compounds (Ueng et al., 1985; Thamotharan, Parthasarathi, Sanyal et al., 2003; Thamotharan et al., 2004). The dihedral angle between the sydnone moiety and the attached benzene ring in 3 -substituted sydnone derivatives ranges from 2 to 39° (Ueng et al., 1987). In (I), the dihedral angle between the planes of the sydnone ring and the attached benzene ring is $13.56(8)^{\circ}$. The two benzene rings are inclined at an angle of 21.02 (8) ${ }^{\circ}$ with respect to one another.

In the crystalline state, carbonyl atom $\mathrm{O} 1 A$ of dimethylformamide accepts two different intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) from the same neighbouring molecule, one from the $\mathrm{N} 12-\mathrm{H} 12$ group and the other from the N14-H14 group. These hydrogen bonds lead to an $R_{2}^{1}(6)$

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 4 May 2004 Accepted 7 May 2004 Online 15 May 2004
motif (Bernstein et al., 1995). Atom C4 acts as a donor for a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction with atom O 13 of an adjacent molecule. This interaction links the molecules into a chain, which runs parallel to the b axis and has a graph-set motif of $C(10)$. Atom C2A of the DMF molecule has a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interaction with atom O 5 of the sydnone moiety of an adjacent molecule. An intramolecular short contact is observed between atoms H12 and H14 (1.99 Å).

Experimental

The title compound was prepared by refluxing 3-(p-azidocarbonyl)phenylsydnone ($0.001 M$) with p-aminoacetophenone ($0.001 M$) in anhydrous toluene (15 ml) for 4 h at 393 K . The crystalline product that separated out was collected and washed with toluene and petroleum ether. The title compound, (I), was recrystallized from an ethanol-DMF mixture (m.p. 489-490 K).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
$M_{r}=411.42$
Triclinic, $P \overline{1}$
$a=7.7954(8) \AA$
$b=8.3922(8) \AA$
$c=16.9225(17) \AA$
$\alpha=79.057(2)^{\circ}$
$\beta=84.267(2)^{\circ}$
$\gamma=65.049(2)^{\circ}$
$V=985.26(17) \AA^{\circ}$

Data collection

Siemens SMART CCD areadetector diffractometer

ω scans

Absorption correction: none
5038 measured reflections
3153 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.116$
$S=1.03$
3153 reflections
282 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 12-\mathrm{H} 12 \cdots \mathrm{O} 1 A^{\mathrm{i}}$	$0.85(2)$	$2.07(2)$	$2.880(2)$	$159.3(19)$
$\mathrm{N} 14-\mathrm{H} 14 \cdots \mathrm{O} A^{\mathrm{i}}$	$0.88(2)$	$1.99(2)$	$2.831(2)$	$159(2)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\text {ii }}$	0.93	2.44	$3.332(3)$	161
$\mathrm{C} 2 A-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.36	$3.267(3)$	166

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $x, y-1, z$; (iii) $x, 1+y, 1+z$.
The positions of the amine H atoms were determined from a difference Fourier map and refined freely, along with their isotropic displacement parameters. The methyl H atoms were constrained to an ideal geometry $(\mathrm{C}-\mathrm{H}=0.96 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$. All remaining H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=$ $0.93 \AA)$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thamotharan, S., Parthasarathi, V., Hunnur, R. K., Shinge, P. S., Badami, B. \& Schenk, K. J. (2003). Acta Cryst. E59, o1762-o1763.
Thamotharan, S., Parthasarathi, V., Mallur, S., Kamble, R., Badami, B. \& Linden, A. (2004). Acta Cryst. E60, o701-o702.
Thamotharan, S., Parthasarathi, V., Sanyal, R., Badami, B. \& Linden, A. (2003). Acta Cryst. E59, o894-o896.

Ueng, C.-H., Wang, Y. \& Yeh, M.-Y. (1985). Acta Cryst. C41, 1776-1779.
Ueng, C.-H., Wang, Y. \& Yeh, M.-Y. (1987). Acta Cryst. C43, 1122-1125.

